
www.elsevier.com/locate/ijhmt

International Journal of Heat and Mass Transfer 50 (2007) 1314–1327
Near-wall modeling of an isothermal vertical wall using
one-dimensional turbulence

Harmanjeet Shihn, Paul E. DesJardin *

Department of Mechanical and Aerospace Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260-4400, USA

Received 5 January 2006; received in revised form 15 September 2006
Available online 14 November 2006
Abstract

One-dimensional turbulence (ODT) modeling approaches are considered for describing the heat transfer from a vertical isothermal
wall. In this approach, near wall gas-phase conduction processes are treated exactly while the effect of turbulent mixing is accounted for
using triplet mapping stirring events. A new buoyancy generation production term is proposed, based on the vorticity transport scaling
arguments, to account for the generation of large scale eddy mixing events. Both temporal and spatial implementations of ODT are
explored and compared to the experimental data of Tsuji and Nagano. Comparisons of velocity, temperature, and Nusselt number show
overall excellent agreement of simulation results to experimental data and to established inner and outer scaling laws for buoyancy driven
boundary layers.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Turbulent boundary layers for vertically isothermal sur-
faces is important for many engineering applications and
has been the subject of numerous investigations ranging
from analytical theories of scaling behavior [1], to integral
formulations [2], to detailed k–� calculations [3,4] and most
recently DNS and LES [5]. The challenge in modeling this
class of flows is the coupling between the heat transfer at
the wall surface and the generation of turbulence from
buoyancy forces, which in turn, affect the temperature gra-
dients and heat transfer at the wall. Predicting the heat
transfer correctly at the wall is therefore critically impor-
tant to accurately predict the overall flow evolution. Many
previous near-wall models for RANS or LES make use of
empirical near-wall modeling to estimate heat transfer via
scaling theories that have had limited success for this cate-
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gory of flows. A more general approach to near-wall mod-
eling is therefore desirable to allow for more complicated
coupled molecular processes to be readily treated in a
self-consistent manner.

One relatively recent advance in this area is the develop-
ment of one-dimensional turbulence (ODT) modeling con-
cepts of Kerstein [6,7]. In this approach, all molecular
processes are explicitly resolved along a one-dimensional
domain. A relatively coarse grid is however used in remain-
ing orthogonal directions to greatly reduce computational
cost. Turbulent mixing processes therefore cannot be
explicitly resolved, but rather, are re-introduced along the
one-dimensional domain using a model based on a pre-
scribed stochastic process description. For the current
application, the molecular processes consist of conduction
and viscous stresses. Previous studies using ODT and its
predecessor, the linear eddy model (LEM) [8] have shown
to be successful at reproducing single-point statistical
moments of flow variables when compared to DNS and
experimental data for simple flows [6,9–12]. More recently,
application of ODT to a buoyancy driven vertical slot [9]
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Nomenclature

A ODT constant for shear, 0.5
B ODT constant for buoyancy correction, 1.0
cp specific heat [kJ/kg K]
g acceleration due to gravity [m/s2]
Gry local Grashoff number
k thermal conductivity [kW/m K]
l eddy length [m]
L length [m]
Nuy local Nusselt number
Pa acceptance probability
Pr Prandtl number
ReT eddy turbulence Reynolds number

RMS normalized root mean square, ð
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t time [s]
T temperature [K]
�T time-averaged temperature [K]
�u time-averaged spanwise velocity [m/s]
v local streamwise velocity [m/s]
�vb bulk velocity of 1D domain [m/s]
�v time-averaged streamwise velocity [m/s]
x distance from the wall [m]
xo start location of eddy [m]
y distance from the leading edge of the wall [m]
Z ODT constant for viscous dissipation, 1.0

Greek symbols

a thermal diffusivity [m2/s]
b volumetric coefficient of expansion, [K�1] =

1/Tavg

dt time step [s]
kr eddy rate distribution
m dynamic viscosity [m2/s]
m̂ eddy mean viscosity
pt Ruckenstein scaling parameter
q density [kg/m3]
qo reference density [kg/m3]
h dimensionless temperature
s characteristic eddy time scale [s]

Subscripts and superscripts

avg average
GC George and Capp scaling
I inner scaling variable
inf, 1 ambient
O outer scaling variable
TN Tsuji and Nagano scaling
w wall
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shows good agreement to DNS results for mean tempera-
ture and velocity, as well as reproduces established Nusselt
number scaling. The scaling behavior is especially remark-
able since no explicit scaling behavior is assumed in the for-
mulation, rather only local rules are enforced as to size and
location of eddy events. LEM and ODT modeling also
have shown similar success for application to reacting flows
[13] and for use as a near-wall model for LES of convec-
tively driven turbulent boundary layers [14].

The goal of the current study is to explore the use of
ODT in this new setting for an isothermal vertical wall.
Temporal and spatial ODT model descriptions are dis-
cussed with special emphasis on a new buoyancy produc-
tion source term introduced for the turbulent eddy
kinetic energy. Results are presented for mean temperature,
velocity and Nusselt number with comparison to estab-
lished scaling theory and experimental data of Tsuji and
Nagano [15] and conclusions drawn for the applicability
of ODT for this problem.
Fig. 1. Sketch of large scale-mixing event from baroclinic torque
generated from a mismatch in hydrostatic pressure and density gradients.
2. Problem statement

Fig. 1 shows a schematic of the vertical isothermal wall
problem under consideration. Dirichlet boundaries are
assumed for the wall temperature, Tw = 333.15 K, and
far-field temperature, T1 = 289.2 K to match the experi-
mental conditions of Tsuji and Nagano [15]. A no-slip
boundary condition is imposed for the velocity at the wall
and is assumed to approach zero in the far field. The
temperature difference between the wall and ambient pro-
vides a buoyant force that drives the flow creating local
mixing in the near-wall region. The initial velocity of the
flow near the bottom of the wall is set equal to zero there-
fore the mean advection is determined solely from buoy-
ancy forces. The relevant non-dimensional parameters



Fig. 3. Sketch of temporal ODT implementation for isothermal wall.

Fig. 4. Sketch of spatial ODT implementation for isothermal wall.
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defining the overall development of the flow are governed
by the Grashoff, Gr = gb(Tw � T1)L3/m2 and Prandtl,
Pr = m/a, numbers. The thermal diffusivity a and the
dynamic viscosity m are assumed to be constant and equal
to 2.56 � 10�5 and 1.59 � 10�5 m2/s, respectively, to match
experimental conditions [15].

3. Modeling approach

The modeling approach for solution of the time-aver-
aged flow-fields is based on the ODT modeling approach
of Kerstein [6,7]. In this approach, the three-dimensional
turbulence problem is reduced to a one dimensional repre-
sentation. The advantage of this dimensional reduction is
to allow for complete resolution of all molecular pro-
cesses, thereby avoiding explicit modeling of higher order
correlations that are required in moment based modeling
approaches. The effects of turbulence mixing is treated
using a series of random ‘‘triplet mapping” re-arrangement
eddy events that serve to increase the local scalar gradients.
An illustration of a triplet mapping event is shown in
Fig. 2. During a mapping event, a segment of the flow field
is first selected and the spatial extent reduced by a factor of
three. Two additional copies are then created and the cen-
ter copy mirror inverted resulting in a measure preserving
re-arrangement event of the scalar field [6]. The location
and frequency of these events are chosen based on a an
instantaneous probability distribution function (PDF)
which depends on local state of the flow-field.

The interpretation of the ODT domain is in general
problem dependent. For the current study, the domain
considered is oriented normal to the wall. Two implemen-
tation of ODT are explored. In the first, the ODT domain
is regarded as a moving Lagrangian domain along the wall
with a mean velocity, �vb, as shown in Fig. 3. This interpre-
tation allows for a correspondence between the simulation
in time and the location of the ODT downstream and will
referred to as the temporal implementation. In the second
implementation, a collection of fixed ODT domains is con-
sidered forming a two-dimensional Cartesian grid as shown
in Fig. 4. For this configuration, a parabolic formulation is
pursued similar to that of Wei [16] and will referred to as
the spatial implementation. In this approach a statistically
stationary state is achieved to construct time-averaged
properties and convection terms at subsequent downstream
positions. Further details on each of these ODT implemen-
tations are discussed next.
Fig. 2. Turbulent convective stirring from a single triplet-mapping stirring
event.
3.1. Temporal formulation

In the temporal formulation, the instantaneous trans-
port equations governing the molecular processes in the
ODT domain for streamwise momentum and temperature
are solved on a moving domain.

ov
ot
¼ m

o2v
ox2
þ gbðT � T1Þ; ð1aÞ

oT
ot
¼ a

o
2T

ox2
: ð1bÞ

In Eqs. (1a) and (1b) all transport properties are assumed
constant and a Boussinesq approximation is used to relate
changes in density to temperature resulting in the same set
of equations as those used in the vertical cavity study of
Dreeben and Kerstein [9]. The equations are integrated in
time using standard Euler time advancement using sec-
ond-order centered differences with Dirichlet boundary
conditions for velocity and temperature. The spatial loca-
tion of the moving ODT domain is determined by assum-
ing the entire domain is advected at a bulk velocity, �vb,
defined as the ratio of the integrated momentum to mass
fluxes similar to previous implementations of ODT [13]

�vbðtÞ ¼
R L

0
qv2ðtÞdxR L

0
qvðtÞdx

: ð2Þ
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The bulk velocity is used to determine a corresponding
downstream location, y, at a given time, t, in the ODT
realization

yðtÞ ¼
Z t

0

�vbðt0Þdt0: ð3Þ

Ensemble statistics are constructed from a sequence of
Monte–Carlo realizations of the flow field and plotted as
a function of downstream distance for comparison to
experimental data.

3.2. Spatial formulation

The main limitation of the temporal formulation is the
interpretation and definition of an appropriate bulk veloc-
ity given in Eq. (2). For flow configurations where the
streamwise velocity varies little in the cross-stream direc-
tion, the exact definition is not critical. For boundary lay-
ers, however, this assumption may be limited therefore a
spatial implementation is also pursued. In this case, a series
of fixed ODT domains are arranged as shown in Fig. 4 in
space for which time-averaged statistics are constructed.
The time scales for updating the means is therefore larger
compared to the time scales of the molecular diffusion
and stirring events. The resolution between subsequent
downstream ODT domains, Dy, is much larger than corre-
lation length for which small scale mixing and molecular
processes are correlated, therefore only time-averaged
quantities are meaningful for exchange between the ODT
domains. Exchanging instantaneous quantities by decreas-
ing Dy would effectively require DNS resolution thereby
off-setting the advantages of using a one-dimensional
approximation in the first place. The instantaneous equa-
tions for an ODT domain are expressed in a parabolized
formulation resulting in the following continuity and the
equations for the transport of velocity and temperature.

o�u
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¼ � o�v
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; ð4aÞ
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The RHS of the equations has the same functional form as
that for steady-state laminar natural convection. The quan-
tities �u and �v are the time-averaged velocity at each ODT
node that are constructed using an iterative time relaxation
procedure at each downstream location. The continuity
equation is then used to get �u given converged value for
�v. In this approach, the transport equations are numerically
discretized as follows:

/nþ1
i;j ¼ /n

i;j � dt �vi;j

�/�i;j � �/i;j�1

Dy

" #

þ Cdt
Dx2
ð/nþ1

iþ1;j � 2/nþ1
i;j þ /nþ1

i�1;jÞ þ Sn
/; ð5Þ
where C = m, a is the generalized transport coefficient and
/ = v, T is a scalar that has a general advection, diffusion
and source terms. The quantity �/i;j�1 is time-averaged /
at the nearest upstream location. The value of �/�i;j repre-
sents a tentative value of �/i;j. To determine improved val-
ues of �/i;j, Eq. (5) is first integrated in time using an
implicit solver until a statistically stationary state of the
flow is attained. Time-averages are then constructed to
determine �/i;j which is then substituted back into Eq. (5)
for �/�i;j. This process is repeated until the difference between
�/i;j and �/�i;j is smaller than a prescribed error tolerance –
indicating a statistically converged state, i.e., �/�i;j ! �/i;j.

4. ODT turbulent mixing

Turbulent mixing is modeled using a sequence of instan-
taneous triplet-mapping stirring events that represent the
effects of turbulent eddies [6]. The mapping consists of
the replacement of a 1D profile on the sampled segment
with three identical copies compressed to one-third of their
original length, with the middle copy mirror inverted as
shown in Fig. 3. The result of an eddy event then maps
the scalar /(x) ? /(f(x)), where f is the mapping function
with the following definition [6]:

f ðxÞ � xo þ

3ðx� xoÞ if xo 6 x 6 xo þ l=3;

2l� 3ðx� xoÞ if xo þ l=3 6 x 6 xo þ 2l=3;

3ðx� xoÞ � 2l if xo þ 2l=3 6 x 6 xo þ l;

x� xo otherwise;

8>>><
>>>:

ð6Þ

where xo is the starting point for the triplet map. The rate
and location of the triplet mapping events are assumed to
following a marked Poisson processes for which the prob-
ability that an eddy will take place of size, l, at location xo,
over time s is equal to k(l,s) dxo dldt, where k is defined as
the eddy rate distribution, defined as k = 1/l2s [6]. Follow-
ing earlier scalar implementations of ODT, the time scale,
s, associated with eddy events is derived based on scaling
arguments for the production/dissipation of eddy turbulent
kinetic energy. Two mechanisms for eddy production are
considered. The first is from velocity shear for which the
rate of energy generation is assumed to be proportional
to the local velocity shear.

l
s
� dv; ð7Þ

where dv is the velocity difference across the eddy. In more
recent vector implementations of ODT, the generation of
eddy kinetic energy can be more precisely defined in terms
of the maximum available turbulent kinetic energy in the
context of a modified mapping function that changes the
amplitudes of the post-image velocity component, vI(f(y)),
to account for pressure scrambling [10], changes in poten-
tial energy [17] and compressibility effects [12]. In this
study, simpler approach is pursued so as to include an
additional mechanism for eddy production from baroclinic
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torque generated from the mismatch in density and hydro-
static pressure gradients that is illustrated in Fig. 1. Guid-
ance on estimating an eddy time scale for this event may be
found by considering only the production term in the vor-
ticity transport equation responsible for baroclinic torque

D~x
Dt
� q1

rq�~g
q2

: ð8Þ

Based on Eq. (8), a time scale for eddy production can be
estimated for a given eddy

1

s2
’ 1

�q
g

dq
l
; ð9Þ

where �q is the average density of the eddy and dq similar
to the velocity difference. Combining Eqs. (7) and (9) re-
sults in a balance equation for eddy turbulent kinetic
energy

l
sðl; y; tÞ

� �2
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DKE
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shear production

þ B
lgdq
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� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

buoyancy production

� Z
l
sd

� �2

|fflfflfflffl{zfflfflfflffl}
vicous dissipation

ð10Þ
The terms on the right-hand side of Eq. (10) represent the
production of turbulent kinetic energy from shear and
buoyancy forces and a sink term from viscous dissipation.
The viscous dissipation term prohibits the formation of
eddies that are smaller than viscous length scales where
sd ¼ l2

16m̂ is defined as a viscous time scale with m̂ ¼
1
l

R xþl
l

ds
mðsÞ

� ��1

[6]. The quantities dv and dq represent bulk

differences in velocity and density across the eddy and are
defined in terms of averages across the right and left sides
of the eddy as

dv ðor dqÞ ¼ 2

l

 Z xoþðl=2Þ

xo

vðx; tÞðor qðx; tÞÞdx

�
Z xoþl

xoþðl=2Þ
vðx; tÞðor qðx; tÞÞdx

!
: ð11Þ

The second term on the RHS of Eq. (10) is to account for
air engulfment from a long wave length instability modes.
Using a Boussinesq approximation ðdq ’ �qbDT ), Eq. (10)
is used to determine the mixing frequency, k,

k ¼ 1

l2s
¼ m

l4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0Re2

l þ B0
q1
�q

Grl � Z 0
r

; ð12Þ

where Rel(�dvl/m) and Grl (�gbDT l3/m2) are the eddy Rey-
nolds and Grashoff numbers, and A0 = A2, B0 = B and
Z0 = (162)Z, where the constants are order unity and cho-
sen to be A = 0.5, B = 1.0 and Z = 1.0 in this study, consis-
tent with previous ODT implementations. As will be
discussed in the results, the predictions are fairly insensitive
to the exact choice of these constants.

As discussed by Kerstein [6], the probability density
given in Eq. (12) can in principle be sampled by first con-
structing the distribution for all possible values of l and
xo and then sampling from that distribution [6]. The cost
of implementing such an approach however is prohibitive
and therefore a generalized rejection method is pursued
as discussed in [6]. Further discussion of this approach will
be discussed in the results.

The eddy selection procedure however may occasionally
result in the occurrence of unphysical large eddies that will
dominate the overall scalar evolution. To remedy this issue,
a large scale eddy suppression mechanism is introduced.
For this study, the median model is implemented for which
a linear profile across the eddy range is first constructed
with a slope corresponding to the median of jdv/dxj across
the eddy range. This velocity gradient is used to determine
a minimum reference eddy rate probability, kmin. If
kassumed < kmin then the selected eddy is rejected [6].

5. Results and discussion

Comparisons of ODT predictions to the theory and
experiment of Tsuji and Nagano for an isothermal wall
are made in this study. In the experiment a copper plate
measuring 4 m high and 1 m wide is at a uniform tempera-
ture of 333.15 K in an ambient atmosphere at 289.2 K.
Two V-shaped hot wires and a cold wire were used to mea-
sure the temperature and velocity of the flow field at several
downstream locations [15]. In both the temporal and spa-
tial ODT implementations, a total of 800 grid points are
used in the wall normal direction producing a 0.5 mm res-
olution. For the spatial formulation, a coarser grid of 1 cm
resolution is employed in the streamwise direction to
resolve only mean flow quantities. For the temporal formu-
lation, a total of 1000 realizations are collected to construct
mean and RMS statistics as a function of time. These
quantities are then plotted as a function of downstream dis-
tance using Eq. (3).

5.1. Comparison to theory and experimental data

Fig. 5 shows contour plots of (a) temperature and (b)
streamwise velocity for a single ODT realization using
the temporal formulation. As the flow accelerates down-
stream, progressively larger eddy stirring events are
observed resulting in the engulfment of surrounding air.
Ensemble average contour plots of temperature and veloc-
ity are shown in Fig. 6 with detailed profiles summarized in
Fig. 7 at downstream locations of x = 2, 4, 6 and 8 m. The
local velocity maximum occurs very near the wall from a
balance of local buoyancy forces and the viscous shear
stress from the no-slip boundary condition at the wall.
The boundary layer of buoyancy driven flows is therefore
very different from convectively driven boundary layers
where the velocity maximum occurs in the free-stream. In
terms of the inner scaling, the principle difference is that
the sum of the viscous ð�lo�v=oxÞ and turbulent ð�u0v0Þ
shear stresses are constant across the boundary layer thick-
ness for convectively driven boundary layers, while this is
not the case for buoyancy driven boundary layers. In the



Fig. 5. Instantaneous snapshots of (a) temperature (K) and (b) streamwise
velocity (m/s) from a single ODT realization using the temporal
formulation.

Fig. 6. Ensemble average (a) temperature (K) and (b) streamwise velocity
(m/s) contours using the temporal formulation.
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latter case, the sum of the conduction, �ko�T=ox, and
turbulent flux, �u0T 0, is constant in the near-boundary
region and equal to the total near-wall heat flux, qw. Using
this observation, George and Capp (GC) developed inner
scaling relations for the temperature (ð�T � T wÞ=T I) and
velocity ðv=vIÞ profiles assuming the near-wall temperature
and velocities depend solely on gb, qw and k [1],

LGC
I ¼ a3

gbF o

� �1=4

; ð13aÞ

T GC
I ¼ F 3=4

o ðgbaÞ�1=4
; ð13bÞ

vGC
I ¼ ðgbF oaÞ1=4

; ð13cÞ

where LI, TI and vI are the inner scalings for length, tem-
perature and velocity, respectively. GC also developed out-
er layer scaling relations where it is assumed that molecular
processes are negligible at sufficiently far distances from the
wall. These scaling are expressed in terms of velocity ð�v=voÞ
and temperature (ð�T � T wÞ=T OÞ deficit profiles assuming
that they are functions of qw, gb and an outer scaling
length, LGC

O , that is assumed to be equal to momentum
thickness, dv.
LGC
O ¼ dv; ð14aÞ

T GC
O ¼ q2=3

w ðgbdÞ�1=3
; ð14bÞ

vGC
O ¼ ðgbqwdkÞ1=4

: ð14cÞ

Figs. 8 and 9 show mean temperature and velocity profiles
using the inner and outer scaling proposed by GC, respec-
tively. The temperature profiles are observed to collapse
nicely, consistent with the theory. The velocity profiles,
however, show only a limited range of collapse for
x=LGC

I < 1 and x=LGC
O > 1:5 for the inner and outer ranges,

respectively. These trends are consistent with that observed
by Dreeben and Kerstein for ODT and DNS predictions of
a vertical isothermal channel [9]. The reason for the lack of
collapse for velocity may be attributed to two possible rea-
sons. The first is the relatively low values of Gry considered.
For low values of Gry, a distinct scale separation between
inner and outer flow dynamics may not exist therefore
the arguments for these distinct regions no longer hold
true. The second reason is that the scaling estimates of
GC are only strictly valid for constant heat flux boundary
conditions, therefore may have some limited applicability
for the current isothermal wall case.



Fig. 7. Ensemble average (a) temperature (K) and (b) stream-wise velocity
(m/s) profiles at x = 2, 4, 6 and 8 m downstream using the temporal
formulation.

Fig. 8. Ensemble average (a) temperature and (b) streamwise velocity
profiles at x = 2, 4, 6 and 8 m downstream using inner variable scaling of
George and Capp [1].
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Alternatively, Tsuji and Nagano (TN) considered scal-
ing of the inner layer using similarity variables for a lami-
nar boundary layer flow, LTN

IV ¼ ðx=yÞGr1=4
y , and show

excellent collapse of inner mean and RMS velocity [15].
For the temperature, they suggest correlating the inner
temperature profiles using the heat flux, or more precisely,
a non-dimensional heat flux at the surface, LTN

IT ¼
�xðoh=oxÞjx¼0, where h ¼ ð�T � T wÞ=ðT w � T1Þ. Similar
arguments are used for the normalization of the velocity
and temperature resulting in the following set of inner scal-
ing variables:

LTN
IV ¼ ð1=yÞGr1=4

y ; ð15aÞ
LTN

IT ¼ �ðoh=oxÞjx¼0; ð15bÞ
T TN

I ¼ T w � T1; ð15cÞ
vTN

I ¼ Gr1=2
y m=y: ð15dÞ

For the outer scaling TN found that their data collapses if
the distances are scaled by the thermal and momentum
boundary layer thicknesses resulting in the following set
of outer scalings:

LTN
OV ¼ dv; ð16aÞ

LTN
OT ¼ dT; ð16bÞ

T TN
O ¼ T w � T1; ð16cÞ

vTN
O ¼ vmax; ð16dÞ

where dT and dv are the integral thermal or momen-
tum boundary layer thicknesses defined as dT ¼R L

0
hðxÞdx and dv ¼

R L
0
ðvðxÞ=vmaxÞdx, respectively. Compari-

son of ODT predictions of normalized boundary layer
thicknesses are shown in Fig. 10 with comparison to the
experimentally obtained empirical relations from TN
(Fig. 11)

Ubdv=m ¼ 0:331Gr0:250
y ; ð17aÞ

UbdT=m ¼ 0:646Gr0:151
y ; ð17bÞ



Fig. 9. Ensemble average (a) temperature and (b) streamwise velocity
profiles at x = 2, 4, 6 and 8 m downstream using outer variable scaling of
George and Capp [1].

Fig. 10. Normalized thermal (UbdT/m) and momentum (UbdU/m) boundary
layer thicknesses vs. Gry (=gb(Tw � T1)y3/m2).

Fig. 11. Ensemble average (a) temperature and (b) streamwise velocity
profiles at x = 2, 4, 6 and 8 m downstream using inner variable scaling of
Tsuji and Nagano [15].
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where Ub(=(gb(Tw � T1)m)1/3) is a reference velocity. As
expected, the momentum boundary layer thickness grows
faster than the thermal boundary layer thickness for the
Pr < 1 case considered. The overall agreement of the pre-
dictions to the experimentally derived empirical correla-
tions is good.

Comparisons of velocity and temperature profiles using
the outer scaling suggested by TN with comparison to their
data are presented in Fig. 12 for (a) temperature and (b)
velocity at several downstream locations. The profiles col-
lapse between 6 and 8 m downstream indicating a self-sim-
ilar state. Overall agreement with the experimental data are
excellent with maximum errors of 3% and 15% for the tem-
perature and velocity, respectively. Also included in the
profile comparisons in the result from the spatial formu-
lation at y = 8 m downstream. Overall, predictions for
temperature using the spatial formulation are almost
identical to the temporal formulation. Predictions of
stream-wise velocity show the spatial formulation slightly



Fig. 12. Ensemble average (a) temperature and (b) streamwise velocity
profiles at x = 2, 4 and 8 m downstream along with the solution for spatial
formulation using outer variable scaling of Tsuji and Nagano [15].

Fig. 13. Ensemble average (a) temperature and (b) streamwise velocity
profiles for increasing Gr using outer variable scaling of Tsuji and Nagano
[15].

Fig. 14. Normalized RMS of temperature and velocity using temporal
formation at self-similar state.
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under-predicts the streamwise velocity with maximum
error of 16% but is able to predict the far-field entrainment
velocity slightly better than the temporal formulation. To
further examine the general applicability of these scaling
relations, the temperature difference between the wall and
the far-field is increased by a factor of 10 resulting in a fac-
tor of 6.1 increase in the Grashoff number. Fig. 13 shows a
comparison of this case with the baseline case at y = 8 m.
No differences are observed, suggesting that the outer sca-
lings from TN are very reasonable.

Fig. 14 shows comparisons of normalized temperature
and velocity RMS profiles using the TN outer scaling with
comparison to their data. The local peak in velocity
observed in Fig. 12(b) results in the narrow RMS velocity
profile compared to that for temperature. For a turbulent
kinetic energy production standpoint, the peak in velocity
provides two regions of shear and therefore an increase
in TKE production. In contrast, the average temperature
monotonically decreases from the wall to the far-field tem-
perature resulting in a more distributed region of tempera-
ture variance. Qualitatively the ODT predictions are in



Fig. 15. Predictions of Nu vs. Gry compared to laminar boundary layer
theory, Nuy ¼ 0:355Gr1=4

y [18] and experimental data, Nuy ¼ 0:11Gr1=3
y , of

Tsuji and Nagano [15].

Fig. 16. Predictions of Nuy sensitivity to Pr number as a function of (a)
Gry and (b) Pt = GryPr2(41.96 + 58.43Pr)�4/3 [20].
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good agreement to the data with respect to the extent of the
distributions. However, two local maxima are predicted
using ODT rather than just one maxima observed in the
data. The two local maxima in the RMS is consistent with
previous ODT simulations and is attributed to an artifact
associated with the implementation of the triplet-mapping
event near the wall [14].

Fig. 15 present comparisons of Nuy(=hy/k) number
vs. Gry(=gb(Tw � T1)y3/m2) number both with and
without (laminar case) the ODT stirring mechanism.
For the case without stirring, predictions of Nuy com-
pare very well to the laminar boundary layer correlation
of Ostrach, Nuy ¼ 0:355Gr1=4

y [18]. Cases with stirring
activated agree well to the experimental correlation of
TN, Nuy ¼ 0:11Gr1=3

y , with a scaling behavior following
a 1/3 power law. Quantitatively, however, the prediction
of Nuy appears to be a factor of two low. This result is
consistent with previous ODT studies of flow in a
vertical channel for which the Nu was also a factor of
two lower with comparison to DNS [9]. A possible rea-
son for the observed differences may be in part the
ambiguity in defining the downstream spatial location
using the bulk velocity (Eq. (3)) using the temporal for-
mulation. To remove this uncertainty, cases are also
conducted using the spatial formulation, however, the
results are almost identical to those based on the tem-
poral formulation.

More generally, Nuy is well known to be a function of
both Gry and the Pr number for which empirically based
correlations are available [19]. Fig. 16(a) shows ODT cases
with the Pr increased and decreased by a factor of 10.
Increasing the Pr decreases the thermal boundary layer
thickness, dT, and increases the local heat transfer.
Recently, Ruckenstein developed a heat transfer correla-
tion applicable over a wide range of Prandtl numbers by
proposing an interpolation expression for Nuy and using
the limiting cases of Pr ?1 and Pr ? 0 to solve for two
unknown constants, resulting in the following expression
[20,21]:

Nuy ¼ Gr1=3
y Pr2=3ðC1 þ C2PrÞ�4=9

; ð18Þ
where C1 = 41.96 and C2 = 58.43. Ruckenstein further
suggested that Eq. (18) can also be expressed in terms of
a single non-dimensional grouping, Nuy ¼ p1=3

t , where
pt = GryPr2(C1 + C2Pr)�4/3. Fig. 16(b) shows the result
from Fig. 16(a) expressed in terms of pt. As shown, the
ODT predictions of Nuy collapse to a single curve in excel-
lent agreement with the theory.
5.2. ODT model sensitivity

5.2.1. Model constants
Figs. 17–19 summarize the sensitivity of the results

to the model constants A, B and Z. Additional



Fig. 17. Sensitivity of normalized mean (a) temperature and (b) velocity
predictions to model constant A.

Fig. 18. Sensitivity of normalized mean (a) temperature and (b) velocity
predictions to model constant B.
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simulations are conducted with variations of each of these
constants by ±50% for A and B, and ±100% for Z.
Constants A and B are the proportionality factors which
account for the dependency of eddy production from
velocity shear and density gradients, respectively.
Figs. 17 and 18 show that varying A or B by 50% results
in more mixing in the outer layer consistent with
the physical interpretation of the constants. However,
the maximum difference in mean temperature and stream-
wise velocity from the baseline case is only 3% and 5%,
respectively, showing the robustness of the modeling
approach.

Fig. 19 shows the sensitivity of mean temperature and
velocity with variations in Z by ±100%. As shown, almost
no difference in the overall profiles is observed. The reason
for this is that the mean profiles are dominated by the large
eddy turnover events. The constant Z controls the extent of
small scale eddy suppression and therefore has little affect
on the larger scales of motion, consistent with classical the-
ories of turbulence.
5.2.2. Numerical parameters

As discussed in Section 4, the probability density given
in Eq. (12) can in principle be sampled by first construct-
ing the distribution for all possible values of l and xo and
then sample it [6]. The cost of implementing such an
approach however is prohibitive and therefore a general-
ized rejection method is pursued as discussed in [6] In this
case, a trial joint PDF for eddy size and location is first
assumed that has the functional form, kassumed = f(l)g(xo),
where f(l) and g(xo) defined the probability density for
the size and location, respectively [6]. The rejection
method is implemented by first sampling from f(l) and
g(xo) to determine the size and location of a trial eddy.
Once an trial eddy is selected then an acceptance proba-
bility Pa = k/kassumed = kDtstir/(f(l)g(xo)), is determined
and a separate random number, RN, is sampled. If RN

is less than Pa then the eddy is implemented, otherwise
the eddy is rejected. This approach to implementing eddy
events can be thought of a more generalized rejection
approach to sampling a given PDF [22,23]. In this study,



Fig. 19. Sensitivity of normalized mean (a) temperature and (b) velocity
predictions to model constant Z. Fig. 20. Sensitivity of normalized mean (a) temperature and (b) velocity

predictions to ReT used in ODT rejection sampling method.
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the linear eddy model (LEM) is employed as the trial
PDF,

f ðlÞ ¼ 3� p

L½Re3=p�1
T � 1�

l
L

� �p�4

ð19Þ

and is parameterized by an integral length scale of turbu-
lence, Lk, a turbulence Reynolds number, ReT, and a high
Reynolds number scaling parameter, p(=4/3). The most
important issues for selecting these parameters is to en-
sure that the trial PDF spans the size range of all possible
eddy events. To guarantee this to be the case, the Lk is
chosen to be the entire domain width and ReT is increased
until the results are independent of this parameter.
Increasing ReT increases the range of possible eddy sizes.
For a fixed Lk, this forces the selection of smaller eddies.
A disadvantage of selecting a ReT too large will be the
added CPU cost of excessive sampling to obtain enough
realization construct ensemble statistics. Fig. 20 shows
normalized (a) temperature and (b) velocity results with
ReT chosen as 30, 80 (baseline) and 130. As shown, results
using ReT = 80 and 130 are nearly identical indicating
that the results are independent for ReT P 80. In contrast,
for ReT = 30 the results are not correct since at this low
Reynolds number the range of possible eddy sizes is arti-
ficially limited to relatively large eddies.

Another consideration in the formulation of the ODT
model for boundary layer flows is the size of the computa-
tional domain. At the free right boundary, the velocity is
assumed equal to zero and the temperature equal to the
far-field temperature. These boundary conditions are valid
as long as the domain is chosen to be sufficiently large. To
observe the effects of the ODT domain size and to make
sure that the solution is independent of it, two different
domain sizes were advected downstream, with the bulk
velocity as mentioned before. Fig. 21 show comparisons
of (a) temperature and (b) velocity profiles using the base-
line 0.4 m and doubling the domain size to 0.8 m. As
shown, the results are almost identical, indicating that the
0.4 m is a sufficiently large domain.



Fig. 21. Sensitivity of normalized mean (a) temperature and (b) velocity
predictions to domain size.
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6. Conclusions

In this study, temporal and spatial stand-alone ODT
models are developed for modeling vertical buoyancy dri-
ven turbulent boundary layers for an isothermal wall. In
this formulation, an eddy generation term is introduced
that accounts for the generation of long wavelength insta-
bility modes. This term is formulated based on time-scales
estimated from the buoyancy source term that arises in
the vorticity transport equation. Overall, excellent agree-
ment is observed between ODT predictions and the exper-
imental data for time-averaged mean velocity and
temperature. Differences however are observed for the
RMS comparisons. Two local maxima are predicted with
the ODT model whereas the data indicates only a single
maxima. These differences are attributed to the current
implementation of the triplet-mapping events near a wall
which will require further research and improvement.
Reasonable agreement is observed between the ODT pre-
dictions and established inner and outer scaling laws for
average temperature and velocity. Comparison of Nusselt
number predictions show the correct Gr1=3

y scaling behav-
ior for unity Pr number and P1=3

t scaling for non-unity Pr

number cases. A sensitivity study revealed that the results
are relatively insensitive to the model constants and all
numerical input parameters, highlighting the robustness
of this modeling approach.
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